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A Joint Vector and Scalar Potential Formulation
for Driven High Frequency Problems Using
Hybrid Edge and Nodal Finite Elements

Romanus Dyczij-Edlinger and Oszkar Biro

Abstract— An advanced A-V method employing edge-based
finite elements for the vector potential A and nodal shape func-
tions for the scalar potential V' is proposed. Both gauged and
ungauged formulations are considered. The novel scheme is
particularly well suited for efficient iterative solvers such as
the preconditioned conjugate gradient method, since it leads
to significantly faster numerical convergence rates than pure
edge element schemes. In contrast to nodal finite element im-
plementations, spurious solutions do not occur and the inher-
ent singularities of the electromagnetic fields in the vicinity of
perfectly conducting edges and corners are handled correctly.
Several numerical examples are presented to verify the suggested
approach.

1. INTRODUCTION

VER THE LAST few years, edge-based finite elements
Ohave widely been accepted as a reliable tool for the
computation of electromagnetic fields. While nodal elements
enforce continuity of all vector components across element
interfaces, edge elements ensure tangential continuity only.
Thus they can cope with material discontinuities as well as
sharp metallic edges and corners in a natural way. Edge
elements provide well-defined subspaces for irrotational fields
and are clearly related to the classes of nodal and facet
elements [1]. The most important thing, however, is that the
occurrence of spurious solutions can be avoided [2]. Because
of these special features, edge elements seem to be ideally
suited for formulations where the unknown is the electric or
magnetic field. In the case of eigenvalue problems, such meth-
ods are very powerful indeed [3]-[5]. However, in the driven
case, they lead to rather ill-conditioned, indefinite matrices,
which result in poor convergence rates of iterative solvers.
Frequently, the widespread incomplete Cholesky conjugate
gradient (ICCG) method does not converge at all [6].

Fortunately, the number of unknowns can be kept rather
small for a wide range of waveguide discontinuity problems
by exploiting techniques that allow the finite element mesh
to be truncated very close to the discontinuity region, e.g.,
the boundary-marching method [7] or transfinite elements
[8]. In these cases, direct solvers can be used and E or
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H based formulations perform very well. However, practical
configurations may also comprise scatterers or discontinuities
that are electrically large, highly inhomogeneous, or compli-
cated in shape. Such structures typically lead to very large
numbers of unknowns and, in consequence, to enormous
computational costs when direct solvers are in use. Under
these circumstances, iterative methods become very attractive
or even indispensable. The slow numerical convergence of
conventional formulations is a serious shortcoming in this case.

In the present work, we point out a major cause of the
convergence problem and present a vector potential formula-
tion that requires far fewer iterations than the F formulation,
while retaining the same level of accuracy. Although a similar
method was suggested by Albanese and Rubinacci [9] for eddy
current fields as early as 1988, this technique has never been
applied to wave propagation problems. While in their paper
a graph theory approach is employed to ensure uniqueness,
we recommend the ungauged formulation. For completeness,
we also describe an inexpensive gauge procedure, similar to
the Lagrange multiplier method for static fields [10]. Although
the proposed method is applicable to the lossy case as well,
the theory presented in this paper is primarily addressed to
lossless, nonradiating structures and the proofs given below
hold for real matrices only.

Improved numerical convergence is not the only benefit
of the new approach. It also enabled us to solve problems
for which the E method had not converged at all. (See
Section V.) The trade-off is the additional scalar field, resulting
in approximately twice as many nonzero matrix entries as
the F formulation. We do not recommend to use the A-V
formulation together with a direct solver, because pure edge
element schemes are computationally less expensive in this
case.

Several numerical examples and comparisons are presented
to demonstrate the merits of the suggested approach.

1I. NOTATIONS AND RESTRICTIONS

In the following, a bounded contractible domain € $R3
is considered. The abbreviation I" stands for the surface of {2
and m for the outward unit normal on I'. We write L2 (L?) for
the space of square integrable scalar (vector) functions over
€1, span (B) for the space spanned by a basis B3, ran( ) for the
range space of an operator, and ker( ) for the nullspace. As
usual, the magnetic flux density is denoted by B, the electric
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and magnetic fields by E and H, the angular frequency by w,
the magnetic permeability by u, the electric permittivity by e,
and the conductivity by o. Throughout €2, we assume p > 0,
e > 0, and ¢ > 0. The considered boundary conditions are

E, given on ', )

H, givenonTy 2

where E, and H; stand for the tangential components of E
and H, I'g is a nonempty connected subset of I', and 'y
is the complement of T'g. The computational domain  is
subdivided into finite elements equipped with both scalar and
vector degrees of freedom. We denote the resulting set of nodal
shape functions W by Aj and the set of edge shape functions
W by £ = & U Ep, where

No={W, €eC®'Q)fori=1---K|W;=00onTg}, (3

Eo={W,eL*(Q) fori=1---N|cul W, € L*(Q),
W.,xn=0onT.}, 4

Ep = {WD € L*(Q) | curl Wp € L3(Q),

Jep € C: ZEDWD Xn:Etxnon PE}. &)
D

In (5), C stands for the set of complex numbers. Since the
shape functions Wp € Ep are reserved for the incorporation
of inhomogeneous Dirichlet boundary conditions, we end up
with K nodal and N edge variables. For compatibility [1], the
spaces W = span (Np) and W} = span (&) need to satisfy
the relation

v € WE; ker (curlv) = {grad ¢ | ¢ € W2}. (6)

III. ANALYSIS OF THE F-FORMULATION

The well-known edge element scheme comes directly from
the PDE

curl (/fl curl B) — WwieE =0 @)

and leads to the (approximate) solution E € span &£ of the
corresponding weak formulation

YW, € W(l,; / [u“l curl E - curl W, — w’cE - W] dQ
Q

Tn

For the resulting system of linear equations we write

(F-u’Q)-e=r, ')

fzk:/,u_lcueri-cuerde, W, W, &, (10)
Q .

.
i

Gk z/eW,~Wde (11)
Q
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Fig. 1. (a) E formulation: Spectrum of a diagonally scaled finite element
matrix in the static case. (b) E formulation: Spectrum of a diagonally scaled
finite element matrix at f = 100 MHz.

where F' and G are symmetric matrices, f,; and g;. denote
the elements of F and G. e stands for the vector of unknown
coefficients, and r for the right-hand side vector. Due to (6)
and (10), the matrix F' is positive semidefinite and its nullspace
is spanned by K linearly independent vectors corresponding to
all irrotational fields representable. The matrix G is positive
definite. The eigenvalues of F — w?G can be classified as
follows:

Type A: In the static case, w = 0, K eigenvalues are
zero. When the frequency is increased, they all move into
the negative range. Thus, the matrix becomes indefinite and
rather ill-conditioned. Fig. 1(a) and (b) illustrates this effect.

Type B: The remaining N — K eigenvalues are related to the
physical resonances of the considered structure. As long as the
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lowest nonzero resonant frequency vk 41 of the corresponding
eigenvalue problem

(F-v’G)-e=0 (12)

is larger than w, they are all positive. On the other hand, each
resonant frequency less than w results in an additional negative
eigenvalue of F'~w?G. We remark that the number of negative
type B-eigenvalues is by far less than K. For a mathematical
proof, see Lemma I in the Appendix.

From the fact that, for any practical finite element dis-
cretization, the main diagonal entries of F — w?G are all
positive, it is clear that diagonal scaling preconditioners cannot
account for any of the negative eigenvalues. In case of
the widespread ICCG solvers, the large number of negative
eigenvalues is also very cumbersome: Under such conditions,
Cholesky-like matrix factorizations are rather sensitive to
perturbations [11] and therefore the neglection of fill-in entries,
which is characteristic for incomplete matrix decompositions,
strongly affects the performance of the preconditioner. In our
experiments, the usual level-O-factorizations have shown to
be extremely inaccurate or even unstable, as indicated by
the excessive growth of matrix elements and huge spectral
condition numbers. More sophisticated schemes employing
drop tolerances for off diagonal entries may help, but these
methods are computationally expensive. From the theoretical
point of view, the standard implementation of the CG method
may become unstable as well [12], but in practice this seems
to be less important.

IV. A-V DESCRIPTION

Our basic idea to prevent poor numerical convergence is to
avoid the displacement of the zero-eigenvalues, as described
in Section III. To this aim, we propose an ungauged potential
formulation employing edge elements for the vector field A
and nodal shape functions for the scalar potential V. For
completeness, a gauged version is also presented.

As usual, the potentials are defined by

A: curlA = B, 13)

V: —jw(gradV+A)=E. (14)

Then, Maxwell’s equations and the boundary conditions (1)
and (2) lead to the transformed boundary value problem

curl (! curl A) — w?e(A + grad V) = 0, (15)
Axn=j/w(E;xmn), V=0 onl'g, (16)
(utcurlA) xn=H;xn onlg. an

The corresponding discrete problem consists of finding a
solution (A € spané, V € span ) to the weak formulation

YW, € W&,
/ [ tcurl A curl W; — w?e(A + grad V) - W,] d
Q

= | @, xn) Wdl
Ty

(18)

that satisfies the boundary condition (16). To make the finite
element matrix symmetric, we state (18) once more, for a
restricted set of weighting functions {grad W; | W; € W§} C
W4, Additionally, we introduce the parameter a@ € R to
provide a gauge. Thus, we have

YW; e WY, / [~w?e(A + o® grad V) - grad W;] d
o)

= (H; x n) - grad W; dT.  (19)
Ty

When the variables assigned to the scalar potential are
numbered first, the resulting system of equations is of the form

v TV
M) |a| = |ra|, 20
—-?Myy  —Mya
M()=| -M%, F-u*G (21)

where v and a denote the vectors of nodal and edge unknowns.
Due to (16), (18), and (19), the elements of the submatrices
Mvyv, My 4, and the right-hand side vectors ry, r4 are given
by

Myv,ik = w2/ e grad Wy, - grad W, d€Q, Wi, Wi € Ny,
Q
(22)

My Ak = w2/ W, -grad W, dQ, W, € No, W, e 50,
? 23)

TV = / (H, x n) - grad W, dT, W, c Ny, (24
|24

TAp — / (—ﬁt x'n,)-Widl“
Tu

—ZED/ (pleurl Wp - curl W; — w?*Wp - W;) dQ,
) Q

Wpeép, W;e€ &. 25)
The matrices F' and G are defined as in Section III and,
by analogy to (5), the constants @p are used to impose the
Dirichlet boundary conditions (16) on I'g. The formulation
is ungauged for a® = 1, because, in this case, any pair
(Vo e WS, Ag = —grad V;) may be added to a given solution
of (18) and (19). It can be shown easily that all other values
of o enforce
VW; € WY; (az—l)/ wlegrad V - grad W; dQ = 0

? (26)
with the unique solution V = 0. We remark that this method
of gauging is very similar to the Lagrange multiplier method
proposed in [10].
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A. Factorization of the Finite Element Matrix

Let us consider the symmetric decomposition

—-a’Myy  —Mya
M(e)=| -M{, F-uG
[aULy 0 -I 0
= |30V4 Uda| |0 Daa
aUyyv LUya
0 Uaa (27)

where Uyvy and U 44 are upper triangular matrices, Uy 4 is
a rectangular K x N matrix, and I is the unity matrix. The
matrix D44 is block diagonal with blocks of dimension one
or two and serves to keep U 44 real-valued in the indefinite
case [13]. From (27) we obtain

Uiy -Uvy = Myv, (28)
Uy Uy =My, (29)
: 2 |
Mis=F—w G+EUVA'UVA
1 _
:F_WZG+ZK_2_ TA‘Mv%/'MVAa (30)
Uly Dag-Uss =My, 3D

Due to (22), M 44 is always positive definite. Moreover, for
0 <w < vgyr and 0 < o? < 1, even the matrix M 44 is
positive definite, or semidefinite for a2 = 1. A more detailed
mathematical formulation can be found in Lemma II in the
Appendix. Thus, the great difference to the E formulation is
that, at least for frequencies below the first resonance and
0 < a? < 1, the factorization (27) is based on numerically
stable processes, namely the Cholesky decompositions of the
positive definite submatrices Myv and M 44.

B. Preconditioner

The considered incomplete Cholesky factorization is based
on the matrix decomposition (27)—(31) and a positive definite
approximation to M 44. Denoting approximate matrices by
apostrophes, we get

M@)=UT.D .U, (32)
-1 0
D=0 I, (33)
, alUyy —I{Q/
U=| 0 Uy |, (34)
U vy ~ MVVa (35)

UL, Uy~ Mya, (36)

M'AA:F—WZG—i— 1/042U$A-U/VANMAA, 37
1T ! ~ r'’ ~ o7’ ~ M

UAA‘UAANMAANMAANMAA' (38)

To keep the number of nonzero entries in U " low, we
perform a level-O-factorization, i.e., all fill-ins are discarded.
Since My is positive definite, the calculation of U’ 144 and
Uva is unproblematic. On the other hand the matrix M AA
may become indefinite (even for 0 < a? < 1) and calllse
stability problems. The reasons for this are: a) In (37), M AA
is derived from the indefinite matrix F — w?G by using the
incomplete factor U’ 'va instead of Uy 4. b) In the ungauged
case, the matrix M 44 to be approximated is singular. c¢) For
w > Vg41, €ven M AA 18 indefinite.

To overcome these d1fﬁcult1es we factorlze a positive
definite approximation M aa instead of M Aa itself. This
is permissible as long as {2 is not too large, because then
(in contrast to the E formulation) the number of negative
eigenvalues of M4, which are improperly represented is
rather small. (See Lemma II in the Appendix.)

C. Gauged Versus Ungauged Formulations

Assumption (6) guarantees that all gauge transformations
of A and grad V are performed in a K-dimensional subspace
of W& [1]. For this reason, all values of « lead to the very
same electric field as the E formulation discussed in Section
II1, which can be interpreted as a rescaled version of the A-
V' approach with the particular gauge V = 0. Nevertheless,
from the numerical point of view, the question of how to
optimally adjust the parameter « in (19) is of great importance.
In particular, the reduced matrix M 44 will become more
and more ill-conditioned as « approaches 1, because K
eigenvalues tend toward zero then. Also, (30) implies that very
small values for o should be avoided.

However, in the case where ¢ = 1, M AA is exactly singular
and, since the solution space ran (M) is of dimension N at
most, we may expect the lowest number of CG iteration steps
possible with this method {14]. For this reason, the ungauged
formulation is preferable for practical calculations.

For completeness, we mention an alternative way of gaug-
ing, namely by specifying a tree through the edges and
eliminating the corresponding degrees of freedom [9]. We have
not tried this method yet, but we are suspicious that it would
lead to poor numerical convergence [15].

D. Computer Implementation

In our experimental software higher order brick elements
with 20 nodes and 36 edges [16] are employed. At present, we
either use no reordering strategy or we rearrange the variables
in v and a (see Section IV) by applying the minimum degree
algorithm [17] to the graph sets of Myy and F — w?2G,
respectively. To form the preconditioner, we start with diag-
onal scaling, i.e., the magnitudes of all main diagonal entries
of M are adjusted to one. After that, the incomplete matrix
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TABLE 1
CuBICAL CAVITY PROBLEM: PHASE ERRORS AND CONVERGENCE RATES OF THE ICCG METHOD IN CASE OF THE UNGAUGED A-V FORMULATION

frequency | lateral length / | ICCG iterations (residual = 107) | phase error of reflection coeff. (deg)
(MHz) wavelength TE,o mode TM;; mode TE)o mode TMs; mode |
100 0.3336 63 54 evanescent evanescent
200 0.6671 105 89 0.000 evanescent
300 1.0007 143 119 0.001 evanescent
400 1.3343 232 211 0.025 evanescent
500 1.6678 475 420 0.042 evanescent
600 2.0014 506 449 0.061 evanescent
700 23349 1127 1234 0.140 0.205
800 2.6685 958 987 0.293 0.323
900 3.0021 1882 2324 0.510 0.581
1000 3.3356 2297 2143 0.867 0.980
1100 3.6692 3150 3363 1.796 1.584
1200 4.0028 3656 3465 2.169 2.106
TABLE II
COMPARISON OF E' AND UNGAUGED A-V FORMULATIONS FOR THE EXAMPLES GIVEN IN THIiS PAPER
problem final CG | fomulation | numberof | numberof | preconditioner CG CG iteration total CPU local error
specification residual equations non-zeros iterations time (sec) time (sec) of E field"
example A: E 155 664 6209 736 diag. scal. 5012 42 256.2 43 398.3 5.74*10*
cavity 10* ungauged | 155664 | 13500555 | diag. scal. 1568 328724 35 326.1 5.69*10*
resonator, AV + 55 255 1IC 601 24 330.5 26 779.1 8.34*10*
irregular mesh, E 155 664 6209 736 diag. scal. 12 269 103 335.7 104 475.3 3.34*10°
f = 800 MHz 107 ungauged 155 664 13 500 555 diag. scal. 3427 71 089.2 73 538.5 4.44*10"
A-V + 55 255 ' IC 958 38 703.8 41 1444 0
example B: E 1120 34 244 diag. scal. 532 229 320 1.23*10%
dielectric 10* ungauged 1120 71 100 diag. scal. 121 104 20.3 3.46*10°
obstacle, AV + 346 IC 20 3.73 17.7 2.67*10°
course mesh, E 1120 34 244 diag. scal. 768 33.1 422 1.73*10°
koa=22 107 ungauged 1120 71100 diag. scal. 165 14.1 239 1.40*10°®
A-V + 346 IC 27 5.01 21.01 0
example B: E 21404 811 806 diag. scal. 1762 21220 22190 3.22%10°
dielectric 10* ungauged 21404 1 754 505 diag. scal. 375 995.7 12024 3.38*10*
obstacle, A-V + 6909 IC 57 2949 598.4 4.48*10*
fine mesh, E 21404 811 806 diag. scal. 2731 3286.0 3384.5 5.64*10°
koa=22 107 ungauged | 21404 1754 505 diag, scal. 490 1301.1 1507.88 | 4.91*107
A-V + 6909 IC 77 396.2 701.9 0
example C: E 20 906 744 419 diag. scal. > 10 000 - - -
hollow probe, 10* ungauged 20 906 1 607 695 diag. scal. 382 920.9 11094 2.45%10°*
h/1=05 A-V + 6 608 1IC 75 348.76 625.3 1.87*10™*
E 20 906 744 419 diag. scal. > 10 000 - - -
107 ungauged 20 906 1607 695 diag, scal. 659 1584.0 17722 8.43*10°
A-V + 6 608 IC 101 468.2 744 .4 0

* See (40) for the definition.

factorization described in Section IV-B is performed. Finally,
the matrix equations are solved iteratively by algorithms of
the conjugate gradient type: In the complex case we employ a
QMR-solver [18], while in the real case we use the standard
implementation of the CG-method.

The method used to construct scalar and vector basis func-
tions [1], [16] makes it possible to obtain the edge element
approximation of E from the potentials in (14) without nu-
merical differentiation. Because of (6), and since the unknowns
correspond to the line integrals along the element edges [16],
we simply obtain

Emn = —jw(amn + U — U’m) (39)

where €., Gmn are the coefficients for E and A associated
with edge {m — n} and v,,, v, stand for the scalar potential
in the starting and ending node of that edge.

V. NUMERICAL EXAMPLES

For convenience, we have summarized all computational
data for the following examples in Table II. In the actual
problem descriptions, these specifications are omitted.

A. Cubical Cavity

Lemma II in the Appendix shows that the number of
negative eigenvalues of the matrix M AA increases with
the frequency. Since, in our preconditioner, just a positive
definite approximation to M AA 1s employed, the resulting
factorization will become inaccurate whenever the wavelength
A becomes significantly smaller than the linear dimensions of
the computational domain. To determine the practical limit,
a simple cubical cavity has been investigated over a wide
frequency range.
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Fig. 2. A-V formulation: Number of CG iterations versus the gauge pa-
rameter o for the cubical cavity problem at f = 200 MHz. (CG residual
norm = 107", excitation: T M3 3 mode.)

For convenience, we chose 1 m for the lateral length I,
and ¢, = p, = 1, 0 = 0. On one surface, the transverse
components of a waveguide mode, either TE; g or TMj3 3,
were prescribed, while all other boundaries were assumed
to be perfectly conducting. The CG method was terminated
when the norm of the relative residual was less than 10~7. To
avoid atypically short solution times due to eigenvalues of high
multiplicity, the cube was subdivided into 13 824 nonuniform
finite elements. Table I shows the numerical convergence
of the ICCG method and the phase error of the reflection
coefficient in case of the ungauged formulation. It can be seen
that the number of iteration steps grows significantly as the
frequency is increased. However, up to [ & 2, convergence
rates are very satisfactory. Note that at the highest frequency,
f = 1.2 GHz, the cavity is as large as (4))3.

Second, the gauged scheme was tested. Fig. 2 illustrates the
dependence of the convergence rate on the parameter o for
f = 200 MHz. As predicted in Section IV-C, the number of
iteration steps is markedly higher than in the ungauged case.

B. Dielectric Obstacle in Rectangular Waveguide

The configuration we considered is depicted in Fig. 3. In or-
der to compare with previous results [19], we make use of the
normalized frequency kga, where 2a is the waveguide width
and ko denotes the free space wavenumber. For simplicity,
all waveguide walls were assumed to be perfectly conducting.
First, the obstacle was lossless and its relative permittivity was
setto €, = 6. Second, a lossy dielectric with €, = 6—30.1 was
considered. The ungauged formulation was used in both cases.
All computations were verified by our A-V nodal element
software [20], but since the results are nearly the same as in
the edge element case, no separate data are presented. Our
solution for the magnitude of the reflection coefficient Sq; is
compared to the results from [19] in Fig. 4. The corresponding
computational data given in Table II are for the course mesh.

Y a4 \
- 0.3%%" /.82
4

.556 .888

2a

Fig. 3. Dielectric obstacle in a rectangular waveguide.

1.0 mr———v — :

o—o0¢.= 6.0-j0.0, course mesh
~— &= 6.0-j0.0, Ref. [19]
s—ac¢, = 6.0-j0.1, course mesh

o
o

o
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e
S

Reflection coefficient 1S11]

o
o

0.0 P S 1 —l BV —
1.6 1.8 2.0 2.2 2.4 2.6

Normalized frequency a*k0

Fig. 4. Magnitude of the reflection coefficient | S11| of the dielectric obstacle
versus the normalized frequency koa.

C. Hollow Probe

A coaxially excited probe radiating into a rectangular wave-
guide has been analyzed. Fig. 5 illustrates the geometry of
the considered device. At the operating frequency, f = 1.6
GHz, the waveguide was assumed to be perfectly matched
at both ends. The walls of the hollow tube were assumed to
be infinitely thin and all metallic parts perfectly conducting.
Again, the ungauged method was applied. The maximum
number of CG iterations for a relative residual norm of 107
was 215. As illustrated by Fig. 6, our results for the input
admittance as a function of the probe height are in very good
agreement with the solutions presented in [21].

D. Comparison with the E Formulation

In order to verify the efficiency of our method, we have
recalculated the examples given above with both the A-V
and the F method and different parameter settings. For all
problems, we present solutions for CG residual norms of 104
and 10~7. For the A—V formulation, we applied both diagonal
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Fig. 5. Cross section of a coaxially fed hollow probe in a rectangular
waveguide. Dimensions: ¢ = 3.1 mm, b = 7.13 mm, h = 57 mm, and
d = 135 mm.
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Fig. 6. Input admittance Y~ of the hollow probe as a function of the relative
probe length I/h, Reference plane: z = 0.

scaling and incomplete Cholesky (IC) preconditioners. For the
E scheme, however, IC never converged. To determine how
well the theoretical equivalence of both formulations holds in
practice, we compared the values of the electrical field strength
along each finite element edge. As a measure for the largest
difference observed, we used the maximum local error defined
€i,AV —scheme

by
/ max
2=1---N
(40)

where e, stands for the line integral of the electric field along
edge I, which is the unknown in the E formulation [16].
Since the E method did not converge in one case, the E field
solutions obtained from the A-V formulation for a CG residual
of 107 are used as the “true values” in (40). Table II presents
a comparison of memory consumptions, CPU-times, iteration
counts, and errors. It can be seen that both formulations yield

residual=10"" residual=10""

€i — €, AV —scheme

€= ma

i=1--N

almost equal results and that, especially for larger numbers of
unknowns, the A-V formulation is significantly faster.

VI. CONCLUSION

In this paper we have identified a major reason why con-
ventional edge element formulations for driven high frequency
problems are unsuitable for iterative solvers such as the
preconditioned conjugate gradient method. It has been shown
that significantly faster convergence rates can be obtained from
an alternative, ungauged A-V formulation employing edge
elements for the vector potential and nodal shape functions for
the scalar potential. An obvious disadvantage of the suggested
method is that it results in approximately twice as many
nonzero matrix entries as formulations based on the electric or
magnetic field. Several numerical examples have been given
to verify the suggested approach.

APPENDIX

Lemma I: Let the matrices F' and G be defined as in
Section HI Further, let v? = --- = v} = 0,0 < v}, <
o < vgkyp <w?and w? < vk p.y < -or < vk be the
eigenvalues of the generalized eigenvalue problem

(F - v*G) -z =0. 41

Then, K + P eigenvalues of F — w?G are negative and
N — K — P eigenvalues are positive.

Proof: We denote by z; - - -z the eigenvectors of (41).
For convenience, let them be normalized such that

Vi=1,---,N; zI'.G z;=1. (42)

Then, with X = [z, £2,- -+, Zn], we get from (41)
XT.F.X = diag (v?), (43)
xT.g.-xX=1I (44)

For the eigenvector expansion of a vector z € RY we write

z=X-s (45)
where § = col[sq, -,sn] is the vector of spectral coeffi-
cients. From (44), (45), it follows that

sT.s=27.G 2. (46)

Let P € RV*Y be a symmetric matrix and let 7 < -+ < m,
be the eigenvalues of P. Further, let @; denote the set of all
i-dimensiona! subspaces ¥ in RN Then, the eigenvalues of
P are characterized by [11]

max minz! - P-z/(z7 - 2)

Ty —
PEON 41 ZED

“n

— min maxz2! . P. z/(zT - 2).
9€0, Zev
For arbitrary subspaces ¢, and ¥y _, 3, with dim¥; = ¢ and
dimdny_;41 = N — i+ 1, we may therefore write

min  2T-P-/(z7-2) <7 < %%sz-P~z/(zT-z). (48)
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In the following, we denote by 0 < % < < 7%
and k1 < --- < xy the eigenvalues of G and F — 2@,
respectively. With that, we get from (47)

VzeRY, 42<27.G 2/(27 2) <% (49)
To complete the proof, we split R into two linearly inde-
pendent subspaces:

Case 1: Let Yg4p = span(zi-- T - -Tx4p), with
vl = ... :v%{ =0and 0 < U%(+1 < --- SU%{-}-P < w?.
Then, (48) and (43)-(45) lead to

kg+p < max zl - (F— sz) -z/(zT - 2)
ZEVKyp
= max s -diag(v? -w?) - s/(z"-2). (50)
2EeVKyp
Since, for any z € 9x 4 p, the corresponding vector s is of the
form s = col[sy, - -skx+p; 0, -+, 0], we have

max s -diag (v2 —w?) - s/(27 - 2)

A
< (viyp—w?) min sT-s/(27 2) <0. (51)
ZE€VK 1P
By means of (46) and (49)—(51), we arrive at
krtp < (Vikip —w®) min s7-5/(27  2)
ZE€VK4p
— 2 2 : 7"'(;‘ T,
(v —o%) min TG -2/(z"-2)
< (Vkpp — )i <0 (52)

Hence, K + P eigenvalues of F' — W@ are negative. From the
special case P = 0, ie., w? < U%{ 41, it can be seen that, at
any nonzero frequency, at least K eigenvalues are negative.
Case 2: Let 9n_x_pt1 = span(zgypy1-- TN), With
(W? < U%<+P+1 < <v%.Now, s =col[0,---0; s+ pi1,
-+~ sy] and. by analogy to Case 1, (48), (49), (43)~(46) yield

2'(F—w’G) -z/(27 - 2)

min
N—-K—-P+1

> (U%(+P+1 - ‘*’2)

KK+P4+1 2
TP = e

: T T
min s -8/l2 -2
ZEVN_K-P+1 /( )

> (Vkypy1 —w)F >0 (53)
So the remaining N — K — P eigenvalues are all positive. [J

Lemma II: Let the matrix M a4 be defined by (30). Further,
let v% = ... = U%( =0,0< ’U%{_H < - <L v%{_Hp < w?,
and w? < vk, p., < --- < 0% be the eigenvalues of (41).
Then, P eigenvalues of M a4 are negative and N — K — P
eigenvalues are positive. For a? = 1, the remaining K
eigenvalues are zero and, for 0 < o < 1, they are positive.

Proof: In the following, we make use of the matrices F',

G, M, My, and M+ 4 defined in Sections III and IV. The
eigenvectors of (41), 1 - - - T, are assumed to be normalized
by (42).

Let us first consider the ungauged case o = 1. Then, the
nullspace of M is characterized by

~Myy v —My4-ay=0, (54

~M%, v+ (F — @) - ag = 0. (55)

From its physical interpretation (see Section 1V), we know that

span (ag) = ker F. (56)
Hence,
F-ap=0 (57)
and (55) reduces to
ML, vy = -G - ag. (58)
Combining (54) and (58), we obtain
My, Myl My a0 =w?G-ag. (59)
Since
dimspan (ag) = dimspan (v) = K (60)
we get from (54)
Vv e RE; 'u:—M‘—,%f-MVA-ao. (61)

In other words, any vector v € ME can be expressed in terms
of ay € ker F'. Thus, we may even write

Va e RN Jag € ker F:
v(a) = —My My a-a=v(ag) = —M;} My a-a0. (62)

By means of (59), we arrive at

Va € RY Ja; cker F:
—M%CA -v(a) = MCVF'A 'Mx_/lv "Mva-a
=Mi, -Myy, My, -ag

= sz ca@p. (63)
Next, let us investigate the expression
a’ May, - a. (64)

A) Let ap € span (z1 - - - Tx ) = ker F: With (30), (57), and
(63), we get
ag-MAA (/%)
=a} - (—w*G+1/a*MT , "My My a) -ag

=w?(1 - a?)/c?al - G - ay. (65)

B) Let @y € span(zg+1---Zn): Due to (44), we have
Vao € ker (F); a} -G -ap =0. (66)

Hence, (63) leads to

al Muy-a, =al - (F-w’Q) ay +w?/a?a’ -G ag

=al  (F-uw?@) a,. (67)

The rest is very similar to the proof of Lemma I, so we give a
short outline only. In the following, 0 < 42 < --. < 4% and
p1 < -+ < pn denote the eigenvalues of G and MAA(oz),
respectively.
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Case 1: Let 9p = span(zg + 1+ -zTgyp), with 0 <
w3y <o < vk, p < w2 Then, (48), (49) and (67) lead to

upgtrlré%;iaT‘MAA-a/(aT-a)
= T' —_— 2 . T‘
= maxa (F - w*G)-a/(a”" -a)

< (Wkip—whi <O, (68)

Hence P eigenvalues are negative.
Case 2: Let 9y_p = span(z1 - Tk; Tx4P+1° " TN)

witho} = =v}i =0and w? < vk, p,y < - <V N
Due to (67), we have

Vz € span (Tx+p41- " ZN);
mina” - M a4 -a/(a” -a) > v (v pi1 —w)) >0 (69)

and, by means of (65), we get

Vz €span (1 Zk);
mina? - M 44 -a/(a? - a) > 12?1~ a?)/a? > 0. (70)

Hence

> min af My - T.a
HP+1_a€T9N—Pa 44 -af(a )

’Y%(U%(+P+1 - “"2) >0

> min{ ¥w?(1-a?)/a?>0 »>0. (7

For 0 < a? < 1, we have ppy1 > 0. If a® = 1, then ppi1 =
oppyx =0and ppygy1 > VW(Wk pyy —w?) >0 O
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