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Abstract-An advanced A-V method employing edge-based

finite elements for the vector potential A and nodal shape func-

tions for the scalar potential V is proposed. Both gauged and

ungauged formulations are considered. The novel scheme is

particularly well suited for efficient iterative solvers such as
the preconditioned conjugate gradient method, since it leads
to significantly faster numerical convergence rates than pure
edge element schemes. In contrast to nodal finite element im-
plementations, spurious solutions do not occur and the inher-

ent singularities of the electromagnetic fields in the vicinity of
perfectly conducting edges and corners are handled correctly.

Several numerical examples are presented to verify the suggested

approach.

I. INTRODUCTION

o VER THE LAST few years, edge-based finite elements

have widely been accepted as a reliable tool for the

computation of electromagnetic fields. While nodal elements

enforce continuity of all vector components across element

interfaces, edge elements ensure tangential continuity only.

Thus they can cope with material discontinuities as well as

sharp metallic edges and corners in a natural way. Edge

elements provide well-defined subspaces for irrotational fields

and are clearly related to the classes of nodal and facet

elements [1]. The most important thing, however, is that the

occurrence of spurious solutions can be avoided [2]. Because

of these special features, edge elements seem to be ideally

suited for formulations where the unknown is the electric or

magnetic field. In the case of eigenvalue problems, such meth-

ods are very powerful indeed [3]–[5]. However, in the driven

case, they lead to rather ill-conditioned, indefinite matrices,

which result in poor convergence rates of iterative solvers.

Frequently, the widespread incomplete Cholesky conjugate

gradient (ICCG) method does not converge at all [6].

Fortunately, the number of unknowns can be kept rather

small for a wide range of waveguide discontinuity problems

by exploiting techniques that allow the finite element mesh

to be truncated very close to the discontinuity region, e.g.,

the boundary-marching method [7] or transfinite elements

[8]. In these cases, direct solvers can be used and E or
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11 based formulations perform very well. However, practical

configurations may also comprise scatterers or discontinuities

that are electrically large, highly inhonnogeneous, or compli-

cated in shape. Such structures typically lead to very large

numbers of unknowns and, in consequence, to enormous

computational costs when direct solvers are in use. Under

these circumstances, iterative methods become very attractive

or even indispensable. The slow numerical convergence of

conventional formulations is a serious shortcoming in this case.

In the present work, we point out a major cause of the

convergence problem and present a vector potential fortnula-

tion that requires far fewer iterations than the E formulation,

while retaining the same level of accuracy. Although a similar

method was suggested by Albanese and Rubinacci [9] for eddy

current fields as early as 1988, this technique has never been

applied to wave propagation problems. While in their paper

a graph theory approach is employed to ensure uniqueness,

we recommend the ungauged formulation. For completeness,

we also describe an inexpensive gauge procedure, similar to

the Lagrange multiplier method for static fields [10]. Although

the proposed method is applicable to the lossy case as well,

the theory presented in this paper is primarily addressed to

lossless, nonradiating structures and the proofs given below

hold for real matrices only.

Improved numerical convergence is not the only benefit

of the new approach. It also enabled us to solve problems

for which the E method had not converged at all. (See

Section V.) The trade-off is the additional scalar field, resulting

in approximately twice as many nonzero matrix entries as

the E formulation. We do not recommend to use the A-V

formulation together with a direct solver, because pure edge

element schemes are computationally less expensive in this

case.

Several numerical examples and comparisons are presented

to demonstrate the merits of the suggested approach.

II. NOTATIONS AND RESTRICTIONS

In the following, a bounded contractible domain ~ E !X3

is considered. The abbreviation 17stands for the surface of O

and n for the outward unit normal on I’, We write L2 (L2) for

the space of square integrable scalar (vector) functions over

fl, span (B) for the space spanned by a basis B, ran( ) for the

range space of an operator, anb ker( ) for the nullspace. As

usual, the magnetic flux density is denoted by B, the electric
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and magnetic fields by E and H, the angular frequency by w,

the magnetic permeability by ~, the electric permittivity by c,

and the conductivity by o. Throughout Q we assume p > 0,

e > 0, and c > 0. The considered boundary conditions are

Et given on rE, (1)

Ht given on rH (2)

where Et and Et stand for the tangential components of E

and H, rE is a nonempty connected subset of r, and rff

is the complement of I’E. The computational domain Q is

subdivided into finite elements equipped with both scalar and

vector degrees of freedom. We denote the resulting set of nodal

shape functions W by hfo and the set of edge shape functions

W by & = &o U &D, where

A(O={W, eC0(f2)fori=l KlW~= OOn I’E}, (3)

&o = {W, 6L2(Q) fori= IN I curl W~ ~L2(Q),

W, xn=o On I’e}, (4)

{
&D = W~ ~ L2(!Q) I curl W~ e L2(Q),

~~D~C;
E

}
~DWDx?t=~txnonrE (5)

D

In (5), C stands for the set of complex numbers. Since the

shape functions WD 6 &D are reserved for the incorporation

of inhomogeneous Dirichlet boundaq conditions, we end up

with K nodal and IV edge variables. For compatibility [1], the

spaces W~ = span (A(o) and VV~ = span (to) need to satisfy

the relation

III. ANALYSIS OF THE E-FORMULATION

The well-known edge element scheme comes directly from

the PDE

curl (K–l curl E) – W2CE = O (7)

and leads to the (approximate) solution ~ ~ span C of the

corresponding weak formulation

VW% E w:;
[

~ [U-l curl~ ~curl W, - w2eE. W.] do

= –jw
/

(E, x n) . W, d17. (8)
r.q

For the resulting system of linear equations we write

(F’-u2G)e=r, (9)
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Fig. 1. (a) ,?3 formulation: Spectrum of a diagonally scaled finite element
matrix in the static case. (b) -?3formulation: Spectrum of a diagonally scaled
finite element matrix at f = 100 MHz.

where ~ and G are symmetric matrices, ~zk and gik denote

the elements of F and G. e stands for the vector of unknown

coefficients, and r for the right-hand side vector. Due to (6)

and (10), the matrix F is positive semidefinite and its nullspace

is spanned by K linearly independent vectors corresponding to

all irrotational fields representable. The matrix G is positive

definite. The eigenvalues of F – w 2G can be classified as

follows:

Type A: In the static case, w = O, K eigenvalues are

zero. When the frequency is increased, they all move into

the negative range. Thus, the matrix becomes indefinite and

rather ill-conditioned. Fig, 1(a) and (b) illustrates this effect.

Type B: The remaining lV – K eigenvalues are related to the

physical resonances of the considered structure. As long as the
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lowest nonzero resonant frequency VK+I of the corresponding

eigenvalue problem

(1’-v2G). e=0 (12)

is larger than w, they are all positive. On the other hand, each

resonant frequency less than w results in an additional negative

eigenvalue of F– W2G. We remark that the number of negative

type 13-eigenvalues is by far less than K. For a mathematical

proof, see Lemma I in the Appendix.

From the fact that, for any practical finite element dis-

cretization, the main diagonal entries of F – W2G are all

positive, it is clear that diagonal scaling preconditioners cannot

account for any of the negative eigenvalues. In case of

the widespread ICCG solvers, the large number of negative

eigenvalues is also very cumbersome: Under such conditions,

Cholesky-like matrix factorization are rather sensitive to

perturbations [11] and therefore the neglection of fill-in entries,

which is characteristic for incomplete matrix decompositions,

strongly affects the performance of the preconditioned. In our

experiments, the usual level-O-factorizations have shown to

be extremely inaccurate or even unstable, as indicated by

the excessive growth of matrix elements and huge spectral

condition numbers. More sophisticated schemes employing

drop tolerances for off diagonal entries may help, but these

methods are computationally expensive. From the theoretical

point of view, the standard implementation of the CG method

may become unstable as well [12], but in practice this seems

to be less important.

IV. A-V DESCRIPTION

Our basic idea to prevent poor numerical convergence is to

avoid the displacement of the zero-eigenvalues, as described

in Section III. To this aim, we propose an ungauged potential

formulation employing edge elements for the vector field A

and nodal shape functions for the scalar potential V. For

completeness, a gauged version is also presented.

As usual, the potentials are defined by

A: curl A = B, (13)

v: –jw(grad V + A) = E. (14)

Then, Maxwell’s equations and the boundary conditions (1)

and (2) lead to the transformed boundary value problem

curl (V–l curl A) – w2~(A + grad V) = O, (15)

A x n=j/w(~t x n), V=() OnrE, (16)

(p-l curlA) x n=~t x n on I’H. (17)

The corresponding discrete problem consists of finding a

solution (A ~ span ~, V e span M) to the weak formulation

Vwi E w;;

/
~ [K-l curl A. curl W, - w2e(A + grad V) . W,] dfl

.—
/

(E, x n) . w, dr (18)
I?H

that satisfies the boundary condition (16). To make the finite

element matrix symmetric, we state (18) once more, for a

restricted set of weighting functions {grad Wi I Wi ~ WI} c

W;. Additionally, we introduce the parameter a c VI to

provide a gauge. Thus, we have

‘v’Wj E w:;
/

[-W2C(A + a2 grad V) . grad Wi] dfl
o

——
/

(E, x n) . grad Wi dr. (19)
FH

When the variables assigned to the scalar potential are

numbered first, the resulting system of equations is of the form

[1[1
v TV’

M(a). a = ?-A , (20)

[

–CPlwvv –MVA

M(a) = –M;A F.- W2G 1 (21)

1
where v and a denote the vectors of nodal and edge unknowns.

Due to (16), (18), and (19), the elements of the submatrices

lkfvv, ~VA, and the right-hand side vectors TV, ~A are given

by

mvv,ik = W2
~

e grad wk . grad W, d~, Wi, Wk EA&,
0

(22)

Tv,.i =
/

(B, x n) . grad W, dI’, W, E M,, (24)
r~

r+ =
/

(n, x n) .W,dr
r~

—
~ /(~D P–l CurlwD . Cllrlwi – W2WD ~ Wi) dfl,

D n

The matrices F and G are defined as in Section III and,

by analogy to (5), the constants EL) are used to impose the

Dirichlet boundary conditions (16) on r~. The formulation
2 = 1 because, in this case, ~Y Pairis ungauged for a

(V. E W:, Ao = –grad V;) maybe added to a given solution

of (18) and (19). It can be shown easily that all other values

of a enforce

YWi E W;; (~2 - 1)/’ w2egrad V . grad Wi dQ = O

(26)

with the unique solution V -0. We remark that this method

of gauging is very similar to the Lagrange multiplier method
proposed in [10].
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A. Factorization of the Finite Element Matrix

Let us consider the symmetric decomposition

[

—azikfvv ‘~VA

M(a) = – M;~ F – W2G 1
‘Fk‘-41”F‘Al
rTv‘1 ’27)

where Uvv and UAA are upper triangular matrices, UVA is

a rectangular K x lV matrix, and 1 is the unity matrix. The

matrix 11~ is block diagonal with blocks of dimension one

or two and serves to keep UAA real-valued in the indefinite

case [13]. From (27) we obtain

U;v . UVV = MVV, (28)

=F– W2G+ $-M~A .M~~ “MvA, (30)

U~A . DAA . Ua4A = MAA. (31)

Due to (22), MAA is always positive definite. Moreover, for

O < w < VK+l and O < a2 < 1, even the matrix MAA is

positive definite, or semidefinite for a2 = 1. A more detailed

mathematical formulation can be found in Lemma II in the

Appendix. Thus, the great difference to the E formulation is

that, at least for frequencies below the first resonance and

O < a2 < 1, the factorization (27) is based on numerically

stable processes, namely the Cholesky decompositions of the

positive definite submatrices Mvv and fi~.

B. Preconditioned

The considered incomplete Cholesky factorization is based

on the matrix decomposition (27)–(31) and a positive definite

approximation to ~AA. Denoting approximate matrices by

apostrophes, we get

M(a) z U’T . D’ ~U’, (32)

H–I O

D’ =01, (33)

“=P”‘1 ’34)

u ,T
vv “ U;A ~ MVA, (36)

i&AA = F – W2G + l/QJ2U~A . U’vA E &AA, (37)

u~A .u~A !% iif~A= iii~A%MAA. (38)

To keep the number of nonzero entries in U’ low, we

perform a level-O-factorization, i.e., all fill-ins are discarded.

Since Mvv is positive definite, the calculation of U’vY ,md

U’vA is unproblematic. On the other hand, the matrix A4 AA

may become indefinite (even for O < Q2 < 1) and cause

stability problems. The reasons for this are: a) In (37), fi~A

is derived from the indefinite matrix F – W2G by using the

incomplete factor U(VA instead of UVA. b) In the ungauged

case, the matrix *AA to be approximated is singular. c) For

w > VK+l, even ~AA is indefinite.

To overcome these ~$~lties, we fac~o:ize a positive

definite approximation M AA instead of M AA itself. This

is permissible as long as !2 is not too large, because then

(in contrast to t~e E formulation) the number of negative

eigenvalues of MM which are improperly represented is

rather small. (See Lemma II in the Appendix.)

C. Gauged Versus Ungauged Formulations

Assumption (6) guarantees that all gauge transformations

of A and grad V are performed in a K-dimensional subspace

of )?; [1]. For this reason, all values of a lead to the very

same electric field as the E formulation discussed in Section

III, which can be interpreted as a resealed version of the A-

V approach with the particular gauge V = 0, Nevertheless,

from the numerical point of view, the question of how to

optimally adjust the parameter a in (19) is of great importance.

In particular, the reduced matrix fiti will become more

and more ill-conditioned as a approaches 1, because K
eigenvalues tend toward zero then. Also, (30) implies that very

small values for a should be avoided.

However, in the case where a = 1, fiAA is exactly singular

and, since the solution space ran (M) is of dimension N at

most, we may expect the lowest number of CG iteration steps

possible with this method [14]. For this reason, the ungauged

formulation is preferable for practical calculations.

For completeness, we mention an alternative way of gaug-

ing, namely by specifying a tree through the edges and

eliminating the corresponding degrees of freedom [9]. We have

not tried this method yet, but we are suspicious that it would

lead to poor numerical convergence [15].

D. Computer Implementation

In our experimental software higher order brick elements

with 20 nodes and 36 edges [16] are employed. At present, we

either use no reordering strategy or we rearrange the variables

in v and u (see Section IV) by applying the minimum degree

algorithm [17] to the graph sets of Mvv and F – W2G,

respectively. To form the preconditioned, we start with diag-

onal scaling, i.e., the magnitudes of all main diagonal entries

of ill are adjusted to one. After that, the incomplete matrix
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TABLE I
CUBICALCAVITY PROBLEM: PHASE ERRORSAND CONVERGENCERATES OFTHE ICCG METHOD rN CASE OF THE UNGAUGED A-V FORMULATION

tkqueney laterat length/ lCCG iterations (residual= 10-7) phase error of reflection coeff. (deg)
,

~tfr TEIOmode TM33mede 2E10 mede Tkf33mcde
100 0.3336 63 54 evanescent evanescent

200 0.6671 105 89 0.000 evanescent
3cHt 1.0007 143 119 0.001 evanescent
400 1.3343 232 211 0.025 evanescent
500 1.6678 475 420 0.042 evanescent
600 2.0014 506 449 0.061 evanescent
700 2.3349 1127 1234 0.140 0.205

800 2.6685 958 987 0.293 0.323

900 3.0021 1882 2324 0.510 0.581
1000 3.3356 2297 2143 0.867 0.980
1100 3.6692 3150 3363 1.796 1.584

1200 4.0028 3656 3465 2,169 2.106

TABLE II
COMPARISONOFE ANDUNGAUGEDA-V FORMULATIONSFORTHE EXAMPLES GIVEN IN THIS PAPER

I problem that CG I fomrdation I number of I number of I reconditioner I CG CG iteration tolal CPU local error [
specification

example A:

cavity

resonator,

irregular mesh,

f= 800 MHz ~o-, ungauged I 155 )89.2 73538.5 4.44*1 O-J

A-V 1.8 41L144.4 0

example B: ,El 1120 34244 diag. seal. 532 i 22.9 32.0 L23*104

residual equations non-zeros itermions time (see) time (see) of E field”

E 155664 6209736 diag. seal. 5012 42256.2 43398.3 5.74* 10-4
lo~ ungauged 155664 13500555 diag. seal. 1568 32872.4 35326.1 5.69*104

A-V +55 255 Ic 601 24330.5 26779.1 8.34*104

E 155664 6209736 diag. seal. 12269 103335.7 104475.3 3.~*lo-5

5664 13500555 diag. seal. 3427 710

! +55 255 Ic 958 38703

dielectric
,..4 ungauged 1120 71100 diag. seal. 121 10.4 20.3 3.46* 10-’

obstacle, A-V + 346 IC 20 3.73 17.7 2.67*10-5

course mesh, i? 1120 34244 diag. seal. 768 33.1 42.2 L73*106

ka=2.2 ,U7 ungauged 1120 71100 diag. wal. 165 14.1 23.9 1.40* 10”8

A-V + 346 Ic 27 5.01 21.01 0

exampleB: E 21404 811806 diag. seal. 1762 2122.0 2219.0 3.22*10-3

dielectric 104 ungauged 21404 1754505 diag.scat. 375 995.7 1202.4 3.38*lCr4
obstacIe, A-V + 6909 Ic 57 294.9 598.4 4.48* 104

fine mesh, E 21404 811806 diag.seal. 2731 3286.0 3384.5 5.j4* @

ba=2.2 ,..7 ungauged 21404 1754505 diag, seal. 490 1301.1 1507.88 4.91* l&7

A-V + 6909 Ic 77 396.2 701.9 0
exampleC E 20906 744419 diag.scat. >Ioooo

hollow probe, 104 rnrgauged 20906 1607695 diag. seal. 382 920.9 1109.4 2.45*104
h/1=0.5 A-V +6608 Ic 75 348.76 625.3 1.87* 104

E 20906 744419 diag. seal. >1OOOO
~07 ungauged 20906 1607695 diag. scat. 659 1584.0 1772.2 8.43*10-8

A -V +66r-)R Ir 101 468.2 ‘744.4 o

“ See (40) for the definition.

factorization described in Section IV-B is performed. Finally,

the matrix equations are solved iterativel~ by algorithms of

the conjugate gradient type: In the complex case we employ a

QMR-solver [18], while in the real case we use the standard

implementation of the CG-method.

The method used to construct scalar and vector basis func-

tions [1], [16] makes it possible to obtain the edge element

approximation of E from the potentials in (14) without nu-

merical differentiation. Because of(6), and since the unknowns

correspond to the line integrals along the element edges [16],

we simply obtain

emn = —jw(amm + % — urn ) (39)

where em., amn are the coefficients for E and A associated

with edge {m -+ n} and v~, v. stand for the scalar potential

in the starting and ending node of that edge.

V. NUMERICAL EXAMPLES

For convenience, we have summarized all computational

data for the following examples in Table II. In the actual

problem descriptions, these specifications are omitted.

A. Cubical Cavity

Lemma II in the Appendix shows that the number of

negative eigenvalues of the matrix fiAA increases with

the frequency. Since, in our preconditioned, just a positive

definite approximation to &AA is employed, the resulting

factorization will become inaccurate wlhenever the wavelength

A becomes significantly smaller than the linear dimensions of

the computational domain. To determine the practical limit,

a simple cubical cavity has been investigated over a wide

frequency range.
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120

1

I ungaugedcase&

801 1 , I , I
0.0 0.2 0.4 0.6 0.8 1.0

Gauge parameter alpha

Fig. 2. A-tJ formulation: Number of CG iterations versus the gauge pa-

rameter a for the cubical cavity problem at f = 200 MHz. (CG residual
norm = 10–7, excitation: TAZ3,3 mode.)

For convenience, we chose 1 m for the lateral length 1,

and E~=pr=l, fJ = (). @ one surface, the transverse

components of a waveguide mode, either TE1, O or TM3,3,

were prescribed, while all other boundaries were assumed

to be perfectly conducting. The CG method was terminated

when the norm of the relative residual was less than 10–7, To

avoid atypically short solution times due to eigenvalues of high

multiplicity, the cube was subdivided into 13824 nonuniform

finite elements. Table I shows the numerical convergence

of the ICCG method and the phase error of the reflection

coefficient in case of the ungauged formulation. It can be seen

that the number of iteration steps grows significantly as the

frequency is increased. However, up to 1 % 2A, convergence

rates are very satisfactory. Note that at the highest frequency,

~ = 1.2 GHz, the cavity is as kirge as (4A)3.
Second, the gauged scheme was tested. Fig. 2 illustrates the

dependence of the convergence rate on the parameter @ for

.f = 200 MIIz. As predicted in Section IV-C, the number of
iteration steps is markedly higher than in the ungauged case.

B. Dielectric Obstacle in Rectangular Waveguide

The configuration we considered is depicted in Fig. 3. In or-

der to compare with previous results [19], we make use of the
normalized frequency /coa, where 2a is the waveguide width

and k. denotes the free space wavenumber. For simplicity,

all waveguide walls were assumed to be perfectly conducting.

First, the obstacle was lossless and its relative permittivity was

set to Cv = 6. Second, a lossy dielectric with CT= 6 –jO.l was

considered. The ungauged formulation was used in both cases.

All computations were verified by our A-V nodal element

software [20], but since the results are nearly the same as in

the edge element case, no separate data are presented. Our

solution for the magnitude of the reflection coefficient S11 is

compared to the results from [19] in Fig. 4. The corresponding

computational data given in Table II are for the course mesh.

Fig, 3. Dielectric obstacle in a rectangular waveguide.

1.0

0.8
=

@

~ 0.6

g
o
v

.E 0.4
g
~
c

0.2

0.0
1.6 1.8 2.0 2.2 2.4 2.6

Normalized frequency a*kO

Fig. 4. Magnitude of the reflection coefficient [S11 I of the dielectric obstacle

versus the normalized frequency k. a.

C. Hollow Probe

A coaxially excited probe radiating into a rectangular wave-

guide has been analyzed. Fig. 5 illustrates the geometry of

the considered device. At the operating frequency, f = 1.6

GHz, the waveguide was assumed to be perfectly matched

at both ends. The walls of the hollow tube were assumed to

be infinitely thin and all metallic parts perfectly conducting.

Again, the ungauged method was applied. The maximum

number of CG iterations for a relative residual norm of 10–7

was 215. As illustrated by Fig. 6, our results for the input

admittance as a function of the probe height are in very good

agreement with the solutions presented in [21].

D. Comparison with the E Formulation

In order to verify the efficiency of our method, we have

recalculated the examples given above with both the A-V

and the E method and different parameter settings. For all

problems, we present solutions for CG residual norms of 10-4

and 10–7. For the A– V formulation, we applied both diagonal
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I

Fig. 5. Cross section of a coaxiallv fed hollow urobe in a rectanmlar
w&eguide. Dimensions: a = 3.1 mk, b = 7.13 ~, h = 57 mm: and
d = 135 mm.

0.016 I I

:~
0.2 0.4 0.6 0.8 1.0

Relative probe length Wh

Fig. 6. Input admittanceY of the hollow probeasa function of the relative
probe length l/h, Referenceplane: z = O.

scaling and incomplete Cholesky (IC) preconditioners. For the

IZ! scheme, however, IC never converged. To determine how

well the theoretical equivalence of both formulations holds in

practice, we compared the values of the electrical field strength

along each finite element edge. As a measure for the largest

difference observed, we used the maximum local error defined

by

residual=10–7 II residual= 10-7
t := max f% — %, AV_scheme max ‘i, AV–schemei= I... N Z=l.. .l(

(40)

where et stands for the line integral of the electric field along

edge 1, which is the unknown in the ~ formulation [16].

Since the 13 method did not converge in one case, the A’ field

solutions obtained from the A-V formulation for a CG residual

of 10–7 are used as the “true values” in (40). Table II presents

a comparison of memory consumption, CPU-times, iteration

counts, and errors. It can be seen that both formulations yield

almost equal results and that, especially for larger numbers of

unknowns, the A-V formulation is significantly faster.

VI. CONCLUSION

In this paper we have identified a major reason why con-

ventional edge element formulations for driven high frequency

problems are unsuitable for iterative solvers such as the

preconditioned conjugate gradient method. It has been shown

that significantly faster convergence rates can be obtained from

an alternative, ungauged A-V formulation employing edge

elements for the vector potential and nodlal shape functions for

the scalar potential. An obvious disadvantage of the suggested

method is that it results in approximately twice as many

nonzero matrix entries as formulations based on the electric or

magnetic field. Several numerical examples have been given

to verify the suggested approach.

APPENDIX

Lemma I: Let the matrices F and G be defined as in

Section III. Further, let v: = . . ~ = vi = O, 0 < I&+l S
. . . 5 U$+P < W2, and W2 < v~+P+l 5 . . . 5 I& be the
eigenvalues of the generalized eigenvalue problem

(F-v2G). z=0. (41)

Then, K + P eigenvalues of F – W2G are negative and

~ – K – P eigenvalues are positive.

Proof.’ We denote by xl . . . Zjv the eigenvectors of (41).

For convenience, let them be normalized such that

Vi= l)... ,N; Z~.G.Zi=l. (42)

Then, with X = [zl, X2, . . . ,ZN], we get from (41)

XT .F. X = diag(v?), (43)

For the eigenvector

where s = CO1[s1,

XT. G. X=I. (44)

expansion of a vector z e iHN we write

2=X.3 (45)

,.. , .sN] is the vector of spectral coeffi-

cients. From (44), (45), it follows that

ST .S=ZT. G.Z. (46)

Let P e ‘iRNxN be a symmetric matrix and let ml s . ~.< mm

be the eigenvalues of P. Further, let @~ denote the set of all

i-dimensional subspaces 0 in TtN. Then, the eigenvalues of

P are characterized by [11]

~~ = max minz~ P . z/(zT . z)
t9cQ~_t+~ZE79

= rnin max2T . P . z/(.zT . z)
?9G9. z@9

(47)

For arbitrary subspaces 8, and 8N–z+I., with dim ~i = ~ and

dim ~N_i+l = ~ – i + 1, we may therefore write

min ZT.P. /( ZT.Z) < mi < nll:zT+.z/(ZT”Z). (48)
z@9N_,+l
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In the following, we denote by O < T? ~ . . . ~ ~~

and~l s . . . ~ K,N the eigenvalues of G and F – W2G,

respectively. With that, we get from (47)

b’.ZE~N; T:~zT. G.z/(zT. z) ~&. (49)

To complete the proof, we split !71N into two linearly inde-

pendent subspaces:

(he 1: Let ~K+P = span (% I . . . XK . . . x~+p), Whh
2_ <.. .<v~+p<wz.2—Oand O<u$+l _‘ul-. ..=vK—

Then, (48) and (43)–(45) lead to

fiK+P ~ max ZT . (F - LJ2G) ~z/(zT ~z)
Ze$.y+p

max ST diag (v: – W2) . s/(zT . z). (50)
z@.y+p

Since, for any z E dK+P, the corresponding vectors is of the

form s = CO1[S1, . .. SK+P. 0,...,0], we have

max ST . diag (v? – W2) . s/(zT ~z)
z@?.y+p

s (d+P – 4zg~+p ST “ s/(zT . z) <0. (51)

By means of (46) and (49)–(5 1), we arrive at

~K+P < (V;+p – LiJz) min ST . S/(ZT . Z)
ze$~+p

= (V~+p – LLJ2)Z=y>+p ZT . G . Z/(ZT . Z)

(52)s (&+p – U2)7; <0.

Hence, K+ P eigenvalues of F – W2G are negative. From the

special case P = O, i.e., W2 < v~+l, it can be seen that, at

any nonzero frequency, at least K eigenvalues are negative.

Case 2: Let I?N-K-P+l = span (ZK+P+l . . . ZN), with

< ?J\. NOW, S = COl [0, . . . O; SK+P+~,(U2 < V;+p+l <. ~. _
. . . SN] and, by analogy to Case 1, (48), (49), (43)–(46) yield

t$K+P+l ~ min ZT . (F - W2G) . Z/(ZT ~Z)
zE+N–K–p+~

> (v~+p+l – W2) ze@N~r_,+, ST “ s/(.zT “z)

2 (di-+p+l – bJ2)’y; >0 (53)

So the remaining IV – K – P eigenvalues are all positive. ❑

Lemma 11: Let the matrix Mu be defined by (30). Further,

letv~=. .=v~=O,O<v~+l ~...~v~+p<w2,

< . . . ~ vi be the eigenvalues of (41).and W2 < v~+p+l —

Then, P eigenvalues of MAA are negative and iV – K – P

eigenvalues are positive. For a 2 = 1, the remaining K

eigenvalues are zero and, for O < a2 < 1, they are positive.

Proof In the following, we make use of the matrices F,
G, M, Ml,v, and MV4 defined in Sections III and IV. The

eigenvectors of (41), Z1 . . . ~N, are assumed to be normalized

by (42).

Let us first consider the ungauged case az = 1. Then, the

nullspace of &f is characterized by

–MVT, . V. – MVA . a. = O, (54)

(55)–M~A ~V. + (F – (J2G) . a. = O.

From its physical interpretation (see Section IV), we know that

span (ao) = ker F. (56)

Hence,

F.ao=O (57)

and (55) reduces to

M~~ .Vo = –W2G . ao. (58)

Combining (54) and (58), we obtain

iW~~ .M~~ .MVA a. = w2Gao. (59)

Since

dim span (ao) = dim span (v) = K (60)

we get from (54)

VVE ~K; v= –M~~..Mv*ao. (61)

In other words, any vector v c !71K can be expressed in terms

of a. ~ ker F. Thus, we may even write

Vae !XN 3a. 6ker F:

v(a) = —~~~..MVA.a = v(ao) = —i@,-.ikf~A.aO. (62)

By means of (59), we arrive at

Va~ YIN 3a. Cker F:
_M~A . v(a) = i@.A . Mj~- . MVA . a

= M~A . M$~ “ MVA ~ao

= w2G. ao. (63)

Next, let us investigate the expression

aT . fiAA . a. (64)

A) Let a. ● span (ZI . . . ~K) = ker F: With (30), (57), and

(63), we get

a: .lkfAA . ao

= a; . (–w2G + l/Q2M~,A M~~ . MVA) . ao

= U2(1 — a2)/a2a~ . G . ao. (65)

B) Let a~ C span (ZK+I . . . ZAT): Due to (44), we have

Vu. ~ker(F); af .G. ao =0. (66)

Hence, (63) leads to

a~.iiiAA.a~=a~.(F-w2G) .aL+w2/a2a~. G.ao

=a~ .( F–w2G) al. (67)

The rest is very similar to the proof of Lemma I, so we give a

short outline only. In the following, O < ~~ ~ . . . <z ~fi and

~~<... ~ pN denote the eigenvalues of G and MAA(a),
respectively.
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Case 1: Let ?9P = span(zK + 1. ~.ZK+P), whh O <

< Ug+p < L1.J?Jg+l <..._ 2. Then, (48), (49) and (67) lead to

(68)

Hence P eigenvalues are negative.

Case 2: Let ‘7?N-p = span (ZI . . .ZK; ZK+P+l . . .ZN),

with v~= ...= V; = O and W2 < V~+P+l ~ . . . < V;+N.

Due to (67), we have

and, by means of (65), we get

b’Z ● SpZin(Zl .0 .XK);
min aT . ifAA . a/ (aT . a) z Tfu2(l – t22)/a2 >0. (70)

Hence

#P+l 2 min aT . XfAA . a/(aT . a)
a~&N.p

{

‘Y:(4i+P+l – ~2) >0

}

~ min ~~w2(l – a2)/cs2 ~ O >0. (71)

For O < Q2 <1, we have Up+l >0. If a2 = 1, then #p+l =

. . .
VP+K = O ~d #P+K+l z ~;(v:+P+I – w2) >0. ❑
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